February 9, 2026 — A new study used gene expression analysis to explore how temperature and ocean acidification affect Pacific cod larvae. Scientists discovered that larvae are equipped with genes that allow them to survive cool and acidified conditions. However, warming may cause mortality by depleting energy and triggering inflammatory responses. These mechanisms are possible links between changes in ocean conditions and the recruitment of young fish in the Gulf of Alaska Pacific cod population.
Decrease in Pacific Cod Population
Pacific cod is a highly valued commercial fishery, and cod also play a key role in the ecosystem as both predator and prey. However, cod populations in Alaska have declined in recent years. Decreased population size is likely linked to recent marine heat waves, and early life stages seem to be the most impacted. Scientists predict that marine heatwaves may be more common in the future and that ocean acidification will intensify, particularly at high latitudes.
Experiments have shown that Pacific cod are sensitive to temperature during their early life stages. Temperature influences how their eggs develop, how their bodies use energy, and how they grow and survive as larvae. We don’t know as much about the impacts of ocean acidification.
In a 2024 study at the NOAA Fisheries Alaska Fisheries Science Center, scientists raised Pacific cod from embryos to larvae at multiple temperatures (3°C, 6°C, 10°C). To examine the potential interaction between temperature and ocean acidification, they also raised them in water that replicated current ocean conditions and in more acidified conditions. This mimicked conditions projected for the end of this century. The study found that larval mortality was very high in warm water but the effect of acidification was more complex.
The effects of temperature and acidified conditions depended on the fish’s development stage. Scientists need to better understand how changing ocean conditions can affect important species like Pacific cod, and whether these species can adapt to these changes.
