Saving Seafood

  • Home
  • News
    • Alerts
    • Conservation & Environment
    • Council Actions
    • Economic Impact
    • Enforcement
    • International & Trade
    • Law
    • Management & Regulation
    • Regulations
    • Nutrition
    • Opinion
    • Other News
    • Safety
    • Science
    • State and Local
  • News by Region
    • New England
    • Mid-Atlantic
    • South Atlantic
    • Gulf of Mexico
    • Pacific
    • North Pacific
    • Western Pacific
  • About
    • Contact Us
    • Fishing Terms Glossary

OSU scientist studies slimy new way to count salmon

January 3, 2019 — Scientists have published a novel method for counting Pacific salmon – analyzing DNA from the slime the fish leave behind in their spawning streams.

The study, funded by The National Geographic Society, is published in the journal Molecular Ecology Resources.

“When we analyzed the environmental DNA sloughed into water from salmon tissues, including mucus and skin cells, we got very accurate counts,” said Taal Levi, an ecologist at Oregon State University and lead author on the study. “This is a major first step for more informed salmon management decisions because it opens up the possibility to affordably monitor many more streams than the few that are currently monitored.”

Pacific salmon are a keystone resource in the Pacific Northwest, with an economic impact of well over $500 million each year in Alaska alone. Currently, spawning salmon are counted at just a few streams due to the reliance on human counters, or in rare cases, sonar. Five species of Pacific salmon – pink, chum, sockeye, coho, and chinook – are distributed through more than 6,000 streams in southeast Alaska alone. More than 1,000 of those streams host spawning salmon.

Salmon are anadromous: They migrate from home streams to the ocean as juveniles, and return a few years later as adults to spawn. Anadromous fish such as salmon provide a straightforward scenario for testing whether environmental DNA (eDNA) can be used to count fish, because large numbers of salmon release their DNA as they pass a fixed sampling point, either as they swim up a river or stream as inbound adults or swim downstream as outbound juveniles.

In many rivers and streams, including the majority of freshwater systems in Alaska, adult salmon returning to spawn are poorly monitored, as are fry and smolt production resulting from spawning salmon.

For the study, researchers collected water samples in 2015 and 2016 near the Auke Creek research weir, nearly 16 kilometers north of Juneau. Weirs consist of a series of closely spaced bars across an entire stream to prevent the passage of salmon, except through a single, narrow gate over which a human observer tallies and identifies salmon as they file through.

The Auke Creek weir, cooperatively operated by the National Marine Fisheries Service, in collaboration with the University of Alaska and the Alaska Department of Fish and Game, is known as one of the most accurate fish counters in the world, Levi said.

Read the full story at KTVZ

Recent Headlines

  • Scientists did not recommend a 54 percent cut to the menhaden TAC
  • Broad coalition promotes Senate aquaculture bill
  • Chesapeake Bay region leaders approve revised agreement, commit to cleanup through 2040
  • ALASKA: Contamination safeguards of transboundary mining questioned
  • Federal government decides it won’t list American eel as species at risk
  • US Congress holds hearing on sea lion removals and salmon predation
  • MASSACHUSETTS: Seventeen months on, Vineyard Wind blade break investigation isn’t done
  • Sea lions keep gorging on endangered salmon despite 2018 law

Most Popular Topics

Alaska Aquaculture ASMFC Atlantic States Marine Fisheries Commission BOEM California China Climate change Coronavirus COVID-19 Donald Trump groundfish Gulf of Maine Gulf of Mexico Illegal fishing IUU fishing Lobster Maine Massachusetts Mid-Atlantic National Marine Fisheries Service National Oceanic and Atmospheric Administration NEFMC New Bedford New England New England Fishery Management Council New Jersey New York NMFS NOAA NOAA Fisheries North Atlantic right whales North Carolina North Pacific offshore energy Offshore wind Pacific right whales Salmon South Atlantic Virginia Western Pacific Whales wind energy Wind Farms

Daily Updates & Alerts

Enter your email address to receive daily updates and alerts:
  • This field is for validation purposes and should be left unchanged.
Tweets by @savingseafood

Copyright © 2025 Saving Seafood · WordPress Web Design by Jessee Productions