Saving Seafood

  • Home
  • News
    • Alerts
    • Conservation & Environment
    • Council Actions
    • Economic Impact
    • Enforcement
    • International & Trade
    • Law
    • Management & Regulation
    • Regulations
    • Nutrition
    • Opinion
    • Other News
    • Safety
    • Science
    • State and Local
  • News by Region
    • New England
    • Mid-Atlantic
    • South Atlantic
    • Gulf of Mexico
    • Pacific
    • North Pacific
    • Western Pacific
  • About
    • Contact Us
    • Fishing Terms Glossary

Protecting Largest, Most Prolific Fish May Boost Productivity of Fisheries, New Research Finds

August 17, 2021 — The following was released by NOAA Fisheries:

Management of many of the largest fisheries in the world assumes incorrectly that many small fish reproduce as well as fewer large ones with similar total masses, a new analysis has found. That can lead to overharvesting the largest, most prolific fish that can contribute the most to the population.

Better protection of larger, mature females could improve the productivity of major fisheries. This is crucial at a time when fisheries are increasingly important in providing food resources around the world. The results were published in Proceedings of the National Academy of Sciences this week.

“It is a fundamental question in fisheries management—how much reproduction can you count on?” said Dustin Marshall of Monash University in Australia, lead author of the research. “When you are expecting smaller females to produce the same number of eggs per body mass as larger, older females, you’re not going to have an accurate picture.”

Building on Earlier Research

The new research applies previous findings that questioned longtime assumptions of fisheries management. Traditional thinking held that reproduction is a function of biomass. That means that fish representing a certain mass would produce similar numbers of offspring regardless of their age or maturity. However, syntheses of previous research by some of the same authors demonstrated that larger, older, and more mature fish produce more offspring. Also, previous work suggests that offspring of these older, larger mothers may survive at higher rates.

Management measures, such as establishing Marine Protected Areas that provide refuge for fish to grow larger, can help boost the yields of fisheries and replenish depressed species. They can in effect provide a reservoir of more mature fish with greater reproductive capacity.

“We need to ask, ‘How can we make the most of these fish that reproduce more efficiently—both to sustain the species and to support sustainable fisheries?” said E.J. Dick, a fisheries research biologist at NOAA Fisheries’ Southwest Fisheries Science Center and senior author of the paper.

By contrast, when fishing removes the more prolific larger fish, the traditional assumptions tend to overestimate the production of eggs and the population’s capacity to replenish itself. That can lead to overharvesting which for many of the largest fisheries could remove around twice as many fish as intended, the scientists found.

“In this paper, we connect the dots between early findings that large, old Pacific rockfish produced more eggs per body mass than smaller ones did, and Professor Marshall’s more recent work showing that many other species do, too,” said Marc Mangel, professor emeritus of mathematical biology at UC Santa Cruz and a coauthor. “Without recognizing this, fisheries scientists and managers may overestimate the number of spawning fish needed to produce a certain level of recruitment, and set mortality levels from fishing too high.”

Recognizing Greater Capacity

In their new analysis, the scientists examined whether the largest fisheries in the world take the findings into account. In many cases, they found, fisheries do not.

“This systematic error could help to explain why some stocks have collapsed despite active management,” the scientists wrote. They recommended that managers recalibrate future species stock assessments to recognize the greater reproductive capacity of larger fish. This could reduce overharvesting and may even boost the yields of fisheries.

“Such reductions could have negative repercussions in the short-term, for both food security and the economy, but will yield positive benefits in the long-term,” the scientists wrote. They said that better recognizing the capacity of larger fish could help boost the catches of Atlantic cod fisheries in the longer term, for example.

“Our work suggests that modern management could respond to this challenge by better leveraging the reproductive potential of larger, older fish in exploited stocks more so than is presently the case, using relatively simple policy innovations,” they said.

The research was conducted by scientists from:

  • Monash University
  • Queensland University of Technology
  • University of California Santa Cruz
  • Leibniz Institute of Freshwater Ecology and Inland Fisheries
  • NOAA Fisheries

Read the full release here

Mother of cod: We’re fishing exactly the wrong fish, scientists warn

May 11, 2018 — The bigger a female fish grows, the more eggs she lays — disproportionately so.

That’s the conclusion driven home in a report published Thursday in the journal Science. Biologists at Monash University in Australia and the Smithsonian Tropical Research Institute in Panama gathered egg data from 342 fish species across the world’s oceans.

At the extreme end, the vermilion snapper, Rhomboplites aurorubens, had a 400-fold difference in eggs between the littlest and biggest mama fish. A small female snapper lays around 4,000 eggs. A whopper of a vermilion snapper can deposit eggs by the million, study authors Diego Barneche and Dustin Marshall, colleagues at Monash University, told The Washington Post.

This research won’t come as a surprise to any field biologists who work with fish. Mark Wuenschel, who works at the National Oceanic and Atmospheric Administration’s Northeast Fisheries Science Center and was not a part of this study, said the size effect was so well known it has an acronym among researchers: BOFFFF, for Big Old Fat Fecund Female Fish. But this work is valuable because a BOFFFF’s importance is often tough to assess, Wuenschel said — because these fish are fished out of the population.

Read the full story at the Washington Post

Recent Headlines

  • Scientists did not recommend a 54 percent cut to the menhaden TAC
  • Broad coalition promotes Senate aquaculture bill
  • Chesapeake Bay region leaders approve revised agreement, commit to cleanup through 2040
  • ALASKA: Contamination safeguards of transboundary mining questioned
  • Federal government decides it won’t list American eel as species at risk
  • US Congress holds hearing on sea lion removals and salmon predation
  • MASSACHUSETTS: Seventeen months on, Vineyard Wind blade break investigation isn’t done
  • Sea lions keep gorging on endangered salmon despite 2018 law

Most Popular Topics

Alaska Aquaculture ASMFC Atlantic States Marine Fisheries Commission BOEM California China Climate change Coronavirus COVID-19 Donald Trump groundfish Gulf of Maine Gulf of Mexico Illegal fishing IUU fishing Lobster Maine Massachusetts Mid-Atlantic National Marine Fisheries Service National Oceanic and Atmospheric Administration NEFMC New Bedford New England New England Fishery Management Council New Jersey New York NMFS NOAA NOAA Fisheries North Atlantic right whales North Carolina North Pacific offshore energy Offshore wind Pacific right whales Salmon South Atlantic Virginia Western Pacific Whales wind energy Wind Farms

Daily Updates & Alerts

Enter your email address to receive daily updates and alerts:
  • This field is for validation purposes and should be left unchanged.
Tweets by @savingseafood

Copyright © 2025 Saving Seafood · WordPress Web Design by Jessee Productions