Saving Seafood

  • Home
  • News
    • Alerts
    • Conservation & Environment
    • Council Actions
    • Economic Impact
    • Enforcement
    • International & Trade
    • Law
    • Management & Regulation
    • Regulations
    • Nutrition
    • Opinion
    • Other News
    • Safety
    • Science
    • State and Local
  • News by Region
    • New England
    • Mid-Atlantic
    • South Atlantic
    • Gulf of Mexico
    • Pacific
    • North Pacific
    • Western Pacific
  • About
    • Contact Us
    • Fishing Terms Glossary

Microplastic pollution is everywhere, even in the exhaled breath of dolphins – new research

October 17, 2024 — Bottlenose dolphins in Sarasota Bay in Florida and Barataria Bay in Louisiana are exhaling microplastic fibers, according to our new research published in the journal PLOS One.

Tiny plastic pieces have spread all over the planet – on land, in the air and even in clouds. An estimated 170 trillion bits of microplastic are estimated to be in the oceans alone. Across the globe, research has found people and wildlife are exposed to microplastics mainly through eating and drinking, but also through breathing.

Our study found the microplastic particles exhaled by bottlenose dolphins (Tursiops truncatus) are similar in chemical composition to those identified in human lungs. Whether dolphins are exposed to more of these pollutants than people are is not yet known.

Why it matters

In humans, inhaled microplastics can cause lung inflammation, which can lead to problems including tissue damage, excess mucus, pneumonia, bronchitis, scarring and possibly cancer. Since dolphins and humans inhale similar plastic particles, dolphins may be at risk for the same lung problems.

Read the full article at The Conversation

New program to help prevent ocean trash, promote sustainable packaging

April 25, 2023 — It’s estimated there are at least 50 trillion pieces of plastic and microplastics in the ocean, and a new initiative is underway to help tackle the problem in Maine.

The Maine Sea Grant College Program, University of Maine researchers and statewide partners will receive funding to address the prevention and removal of marine debris in the Gulf of Maine. The problem will be addressed from three directions: promoting sustainable packaging, getting rid of derelict fishing gear and repurposing materials from ghost traps.

“Marine debris negatively impacts our coastal communities, marine wildlife and iconic ocean vistas — things we consider special about our state,” Maine Sea Grant Director Gayle Zydlewski said in a news release. “Whether it’s preventing debris from going into the ocean or getting it out, we need to tackle this issue from multiple directions and perspectives.”

Read the full article at Mainebiz

From Beaches to the Bottom of the Sea, Microplastics Are Everywhere

July 5, 2017 — The following was released by NOAA:

Each year, millions of tons of plastic debris, from water bottles to fishing nets, plastic bags and anything else made of plastic, enters the ocean as marine debris through beach littering, road runoff, sewage, and illegal dumping.

Microplastics, defined as pieces of plastic less than 5 millimeters in size (less than 1/5th of an inch), are everywhere – in the sediments and in the water column, on beaches and in the deep sea. Some microplastics are manufactured at that small size as microbeads for use in cosmetics, toothpaste and facial scrubs, or made as microfibers in synthetic items such as fleece or rope. Others come from larger pieces of plastic that are broken down over time by waves and sunlight into smaller fragments.

Marine animals, from shellfish and fish to larger marine mammals, ingest them through the water or eat prey that contains them. The impact can be serious, affecting an animal’s feeding and reproduction.

Chemists Ashok Deshpande and Beth Sharack of the NEFSC’s Sandy Hook Lab study the impact of chemicals in the marine environment, using analytical tools like gas chromatography and mass spectrometry, commonly known as GC/MS, to look much more closely at the chemical components of plastic pollution. It’s a detective story, as they identify different types of polymers, how they change over time, and where they may have come before they are found in fish and shellfish and in marine sediments.

Their latest tool adds pyrolysis to GC/MS, a technique known as Pyr-GC/MS. In simple terms, a very small piece of plastic, or microplastic, less than 1 milligram in size is placed in a narrow quartz tube which is then placed in a platinum coil and heated to 750 degrees C (about 1,382 degrees F).  The intense heat breaks down the large polymer chain into smaller fragments which are then analyzed by the GS/MS to identify the specific chemicals and contaminants in that sample – a chemical fingerprint of sorts.

“Information on polymer chemistry will help identify plastic products and perhaps help in the mitigation, control, and monitoring of the status and trends of plastic pollution,” said Deshpande, a research chemist in the Habitat Ecology Branch at the Sandy Hook Lab. “Different polymers, which are large molecules made up of many smaller molecules or monomers, have different toxicities and adsorb or bind contaminants in different ways.”

Deshpande said marine animals exposed to microplastics are subjected to a triple threat. “There is the toxicity of the plastic polymer itself, toxicity of the contaminants adsorbed on the plastics, and the nutritional challenge due to the consumption of plastics with literally no food value. It is an area of concern in the management of fisheries resources and endangered species. Some scientists refer to plastics as the next wildlife predator due to their potential behavioral, morphological, physiological, and life cycle effects on wildlife.”

Deshpande, Sharack and colleagues have developed a baseline library of the pyrolysis GC/MS spectra – the chemical fingerprints – from commonly used plastic polymers. They are currently testing the proof of concept of this novel method by analyzing routine plastic items used in our daily lives and the broken pieces of plastics from field collections. The results so far are encouraging.

Understanding what the microplastic pollution is made of, where it is being found and how it is affecting marine species and their habitats will help improve fisheries and habitat management.

Read the full release here

Recent Headlines

  • Scientists did not recommend a 54 percent cut to the menhaden TAC
  • Broad coalition promotes Senate aquaculture bill
  • Chesapeake Bay region leaders approve revised agreement, commit to cleanup through 2040
  • ALASKA: Contamination safeguards of transboundary mining questioned
  • Federal government decides it won’t list American eel as species at risk
  • US Congress holds hearing on sea lion removals and salmon predation
  • MASSACHUSETTS: Seventeen months on, Vineyard Wind blade break investigation isn’t done
  • Sea lions keep gorging on endangered salmon despite 2018 law

Most Popular Topics

Alaska Aquaculture ASMFC Atlantic States Marine Fisheries Commission BOEM California China Climate change Coronavirus COVID-19 Donald Trump groundfish Gulf of Maine Gulf of Mexico Illegal fishing IUU fishing Lobster Maine Massachusetts Mid-Atlantic National Marine Fisheries Service National Oceanic and Atmospheric Administration NEFMC New Bedford New England New England Fishery Management Council New Jersey New York NMFS NOAA NOAA Fisheries North Atlantic right whales North Carolina North Pacific offshore energy Offshore wind Pacific right whales Salmon South Atlantic Virginia Western Pacific Whales wind energy Wind Farms

Daily Updates & Alerts

Enter your email address to receive daily updates and alerts:
  • This field is for validation purposes and should be left unchanged.
Tweets by @savingseafood

Copyright © 2025 Saving Seafood · WordPress Web Design by Jessee Productions