Saving Seafood

  • Home
  • News
    • Alerts
    • Conservation & Environment
    • Council Actions
    • Economic Impact
    • Enforcement
    • International & Trade
    • Law
    • Management & Regulation
    • Regulations
    • Nutrition
    • Opinion
    • Other News
    • Safety
    • Science
    • State and Local
  • News by Region
    • New England
    • Mid-Atlantic
    • South Atlantic
    • Gulf of Mexico
    • Pacific
    • North Pacific
    • Western Pacific
  • About
    • Contact Us
    • Fishing Terms Glossary

The Ocean Is Getting More Acidic —What That Actually Means

June 18, 2018 — Grace Saba steadies herself on the back of a gently rocking boat as she and her crew slide a six-foot long yellow torpedo into the sea. A cheer erupts as the device surfaces, turns on its electronic signal, and begins a three-week journey along the New Jersey coast.

“It’s taken seven years to get this done,” said Saba, who has been working on this experiment since 2011. “I’m so happy, I think I might cry!”

Saba is an assistant professor of marine ecology at Rutgers University, where she is studying how fish, clams, and other creatures are reacting to rising levels of ocean acidity. Acidification is a byproduct of climate change; a slow but exorable real-life experiment in which industrial emissions of carbon dioxide into the atmosphere are absorbed and then undergo chemical reactions in the sea. Rising ocean acidity has already bleached Florida’s coral reefs and killed valuable oysters in the Pacific Northwest.

Now scientists like Saba want to know what might happen to animals that live in the Northeast, a region home to commercially important fishes, wild stocks of quahogs (clams), scallops, and surf clams that can’t swim away from growing acidic waters.

“They are just stuck there,” Saba said.

Saba’s torpedo-like instrument is actually an underwater drone, known as a Slocum glider, that is carrying an ocean acidity sensor. This is the first time that oceanographers have married the two technologies—glider and pH sensor—to get a big-picture view of changes underway in the commercially important fishing grounds of the Northeastern United States.

Read the full story at National Geographic

Recent Headlines

  • Scientists did not recommend a 54 percent cut to the menhaden TAC
  • Broad coalition promotes Senate aquaculture bill
  • Chesapeake Bay region leaders approve revised agreement, commit to cleanup through 2040
  • ALASKA: Contamination safeguards of transboundary mining questioned
  • Federal government decides it won’t list American eel as species at risk
  • US Congress holds hearing on sea lion removals and salmon predation
  • MASSACHUSETTS: Seventeen months on, Vineyard Wind blade break investigation isn’t done
  • Sea lions keep gorging on endangered salmon despite 2018 law

Most Popular Topics

Alaska Aquaculture ASMFC Atlantic States Marine Fisheries Commission BOEM California China Climate change Coronavirus COVID-19 Donald Trump groundfish Gulf of Maine Gulf of Mexico Illegal fishing IUU fishing Lobster Maine Massachusetts Mid-Atlantic National Marine Fisheries Service National Oceanic and Atmospheric Administration NEFMC New Bedford New England New England Fishery Management Council New Jersey New York NMFS NOAA NOAA Fisheries North Atlantic right whales North Carolina North Pacific offshore energy Offshore wind Pacific right whales Salmon South Atlantic Virginia Western Pacific Whales wind energy Wind Farms

Daily Updates & Alerts

Enter your email address to receive daily updates and alerts:
  • This field is for validation purposes and should be left unchanged.
Tweets by @savingseafood

Copyright © 2025 Saving Seafood · WordPress Web Design by Jessee Productions